
DRAFT

May 2017
INTRODUCTION

Solar energy is one of the newest energy sectors in Alberta and is one of the fastest growing energy industries in the world. The Government of Alberta’s Climate Leadership Plan recognizes that the development of renewable energy will help reduce greenhouse gas emissions, diversify energy supplies, stimulate regional activity, and fortify collaboration across industry sectors. The Climate Leadership Plan identifies the following goal:

“By 2030, renewable sources like wind and solar will account for up to 30% of electricity generation.”

While considered a source of renewable clean energy, solar energy has both direct and indirect effects on wildlife, particularly birds (Hernandez et al. 2014, Walston Jr. et al. 2015). Solar energy projects must be appropriately sited and well-designed to avoid or mitigate these effects. Standardized pre- and post-construction surveys of wildlife species and habitat characteristics are key components to inform appropriate site selection and mitigation of solar energy projects. The role of the Government of Alberta’s Ministry of Environment and Parks (AEP) is to ensure that development of solar energy projects include appropriate consideration and mitigation of potential negative effects on Alberta’s wildlife and wildlife habitat.

This document summarizes potential wildlife issues associated with solar energy projects and provides a Directive for minimizing effects to wildlife and wildlife habitat during the siting, construction, and operational phases of solar energy projects. It is to be applied to all solar energy applications and renewals going forward from the date that this Directive is finalized and released by the AEP. It is intended to inform solar energy developers and the AUC of potential wildlife issues and AEP expectations to avoid and minimize negative impacts to wildlife. It will help solar energy developers to provide consistent wildlife-related information in solar energy project applications submitted to the AUC. It is recognized that each project is unique and may require an adaptive approach; therefore this document does not preclude alternative agreements between the AEP Wildlife Biologist and solar energy developers. Additionally, this Directive serves to assist the AEP Wildlife Biologist in advising solar energy developers, responding to stakeholder inquiries related to regulatory applications, and providing consistent information in Wildlife Renewal Energy Referral Reports submitted to the AUC.

As our understanding of the effects of solar energy projects on Alberta’s wildlife improves, so too will our ability to manage these effects. The Directive will be reviewed at least once every ten years, however this review period does not assign an expiry date to the information contained within, nor does it preclude amendments from being proposed and adopted in the interim as new information becomes available. To access the most current version of this document, search for “Wildlife Directive for Solar Energy Projects” on http://www.alberta.ca.
SCOPE AND APPLICATION

Issues surrounding solar energy projects are multi-faceted and extend well beyond wildlife concerns. The scope of this Directive, however, will be limited to those issues affecting wildlife and wildlife habitat and will apply throughout Alberta.

Recommendations from AEP Wildlife Biologists are based on the legislative authority of the Alberta Wildlife Act and are designed to protect wildlife (including species at risk) and wildlife habitat from the potential impacts of solar energy development and operation. AUC Rule 007 (http://www.auc.ab.ca/acts-regulations-and-auc-rules/rules/Pages/Rule007.aspx) outlines the operating conditions and application requirements for power plants, substations, transmission lines, industrial system designations and hydro developments. AUC Rule 007 requires that proponents ensure that environmental information, effects and mitigation (including wildlife) are addressed in the application. For solar projects, AUC Rule 007 also requires that proponents submit with their applications a copy of a signed Wildlife Renewal Energy Referral Report received from the AEP Wildlife Biologist.

Review by a AEP Wildlife Biologist is not required when solar energy projects are small-scale (i.e., less than 1MW) or within urban areas as solar energy infrastructure has inherently low impacts on wildlife when integrated into an existing anthropogenic footprint such as on rooftops (Pimental et al. 1994, Tsoutsos et al. 2005, Dale et al. 2011).

This Directive will assist industry in planning, constructing, and operating solar energy projects in a manner that minimizes effects on wildlife and wildlife habitat. Many species are protected under the provincial Wildlife Act and/or by the federal Migratory Birds Convention Act. Proponents applying to develop solar energy projects are responsible for complying with all federal, provincial, and municipal requirements relevant to their proposed solar energy project(s). The wildlife outcomes expected from implementing this Directive are described in Appendix A.

Wildlife and plant species requiring special management are described as “Species at Risk”, referring primarily to species that have been provincially (Alberta - Wildlife Act) or federally (Canada - Species at Risk Act (SARA)) listed as Endangered, Threatened, or Special Concern. The term may also be used to describe species identified as “May Be at Risk” or “Sensitive” through the Alberta General Status evaluation (search for ‘General Status’ on http://www.alberta.ca).

This Directive addresses all Alberta wildlife regardless of whether they fall under federal or provincial jurisdiction, or occur on privately-owned or Crown land. However, for species under federal jurisdiction (i.e., aquatic species and migratory birds) that occur on provincial lands, or for all wildlife on federal lands, there are additional federal government department requirements. These can be identified by contacting Natural Resources Canada, which is the federal agency responsible for solar energy development on federal lands such as National Parks and Military Reserves. It is the responsibility of the applicant to determine the nature of any additional federal requirements, and to ensure that these requirements are met.
The potential for wildlife to be impacted by infrastructure outside the footprint of solar collectors or reflectors, such as accompanying power lines, collection lines, substations, fences, and roads, also exists. This Directive applies to all solar energy infrastructure within the area defined by the solar energy project boundary and referred to in this Directive as the “solar energy project”.

If an expansion of the scope of this Directive is necessary at a future time, it will be amended to reflect that decision.

WILDLIFE ISSUES RELATED TO SOLAR ENERGY PROJECTS

This section describes the two major types of industrial scale solar energy technology used in North America, and the anticipated impacts to wildlife from the structures and facility requirements of each technology.

Types of Solar Developments

1. **Photovoltaic (PV)**: directly converts sunlight into electricity to export to the grid (Huso et al. 2016). Solar cells are made of layers of semiconductor materials which create electricity directly from the sun’s rays. Typical PV systems are made up of multiple solar cells, known as solar arrays; for utility scale solar developments there may be hundreds of arrays interconnected into a single system (Singh 2013).

2. **Concentrated Solar Power (CSP)**: mirrors are used to focus sunlight on a receiver that collects thermal energy to produce electricity, typically by driving a steam generator (Huso et al. 2016). CSP technology can be further broken into three categories:
 - *Power tower system*: uses a field of movable mirrors, called heliostats, to concentrate the sun’s rays on a large receiver tower to heat fluid for electricity generation using steam turbines (Whitaker et al. 2013). Typically, water is used as the heat transfer fluid and some systems have the energy storage capabilities for continued electricity generation at night (NREL 2016).
 - *Linear concentrator system*: uses long mirrors to focus solar radiation on a central tube where a fluid absorbs the thermal energy, the fluid-based system then heats water to create steam to run conventional steam turbines (Burkhardt et al. 2011). The parabolic trough and the linear Fresnel reflector systems are the most common types of linear CSP systems (NREL 2016).
 - *Dish-engine system*: uses mirrors oriented in a dish shape, similar to a satellite dish, to concentrate solar rays on a central thermal receiver that transfers the heat to the engine generator. The engine requires heat to move pistons which creates mechanical energy and can then generate electricity (NREL 2016).
CSP technologies require cooling systems. Although dry-cooled systems have been developed, the wet-cooled systems are more efficient but necessitate coolant chemicals.

Wildlife Issues

The following section outlines wildlife concerns of utility scale solar energy projects in Alberta.

1. Mortality risk: Wildlife mortality has been documented at a number of solar energy projects in North America; however the cause and risk of mortality differs based on the type of solar energy technology (Kagan et al. 2014, Walston Jr. et al. 2016).

At PV installations, the primary mortality risk to avian wildlife is through direct collision with solar collectors/reflectors, or stranding following impact (Kagan et al. 2014, Huso et al. 2016, Walston Jr. et al. 2016). Waterbirds have increased susceptibility to collisions, likely explained by the “lake effect” hypothesis, where solar collectors/reflectors attract birds due to similar polarization of light reflected off of panels and water (Horváth et al. 2009, 2010, Kagan et al. 2014). When waterbirds attempt to land on panels most birds are killed on impact, however survivors may become stranded and later die from injuries, predators, dehydration, or starvation (Kagan et al. 2014, Huso et al. 2016). Grebes, loons, and other diving waterbirds are particularly vulnerable to stranding because they require water to take flight.

The primary mortality risk associated with power tower CSP technology is caused by solar flux injury resulting in incineration or singeing of feathers causing reduced maneuverability when flying through concentrated solar reflections (McCrary et al. 1986, Ho et al. 2010, Kagan et al. 2014, Walston Jr. et al. 2015). Other reported causes of mortality or injuries at CSP sites include but are not limited to; temporary or permanent blindness, collisions with infrastructure, contact with or ingestion of hazardous chemicals (Ho et al. 2010, Lovich and Ennen 2011), or mortality in open cooling ponds. Causes of mortality from open cooling ponds may be related to exposure to chemicals used in the cooling ponds, drowning or other related causes.

Other sources of direct wildlife mortality through associated solar infrastructure for both PV installation and CPS solar developments includes but is not limited to: collisions with collector lines, electrocution on power lines, anthropogenic wildlife traps, vehicle collisions, and collisions with guy wires and fences (APLIC and USFWS 2005, Longcore et al. 2008, Dickey et al. 2012, Kagan et al. 2014, Huso et al. 2016). Furthermore, Endangered or Threatened plants, designated under the Alberta Wildlife Act, and vulnerable plant communities may be lost due to physical removal during the construction phase.

2. Habitat loss and fragmentation: Construction and operation of solar projects can result in habitat loss and fragmentation (BLM and DOE 2012). In general, habitat loss is the largest contributor to negative impacts on biodiversity and is of particular concern in areas of high historic habitat loss (Fahrig 2003), such as Alberta’s native prairie and parkland habitats. Solar development on native grassland habitat would present a much larger impact to wildlife than on agricultural land, brownfields, or other areas with significant anthropogenic
disturbances (AEP 2016a). In general, the effects of habitat fragmentation on wildlife are weaker when compared to the effects of habitat loss. However, habitat fragmentation may lead to species-specific area sensitivities, obstacles to migration, barriers to gene flow and negative edge effects which can lead to a decrease or loss of local populations (Fahrig 2003, Lovich and Ennen 2011).

Risks associated with habitat loss and fragmentation are significant for species at risk because they require large amounts of contiguous habitat and are generally more susceptible to edge effects and habitat alteration (Fahrig 2003, AEP 2016a). Further, some unique vegetation communities (e.g. rough fescue grasslands) or wildlife communities (e.g. greater sage grouse and silver sagebrush community) cannot be adequately reclaimed post-disturbance, resulting in permanent habitat loss (Aldridge and Boyce 2007, GOA 2010, AEP 2016a).

3. Degradation of habitat quality: Infrastructure and activities within the solar energy project may result in decreased habitat quality and lead to avoidance of the area by wildlife or attraction of species associated with anthropogenic impacts, such as magpies or ravens (Knight and Kawashima 1993, Kristan and Boarman 2003, Lovich and Ennen 2011). Species of increased conservation concern, such as species at risk, are often at higher risk for avoidance; however impacts of habitat avoidance and degradation are species-specific. General area avoidance or unnatural attraction and habitat degradation from energy development can be caused by increased noise levels, increased human presence, introduction of non-native or invasive vegetation, alteration of hydrology, increase of predator populations and introduction of above-ground structures, which can act as perches for avian predators, among other factors (Helzer 1999, Barber et al. 2010, Lovich and Ennen 2011, BLM and DOE 2012, Grippo et al. 2014).

Although limited research has been conducted on the effects of solar energy projects on non-bird species of wildlife such as ungulates, amphibians and invertebrates, a great deal of research exists on the effects of other industrial disturbances with similar components (e.g., construction, vehicles, human use) on these species.

THE APPROACH

This Directive provides information on the requirements and recommendations for solar energy developments in Alberta. Organization of this document follows a tiered approach, whereby sequential stages allow the proponent to proceed logically along a risk assessment pathway to evaluate, avoid, and mitigate negative effects of solar energy projects on wildlife populations and habitat. Appropriate site selection of a project will reduce the risk posed to wildlife. Any remaining risks to wildlife will be addressed in the Wildlife Protection Plan (WPP) that will describe site- or species-specific mitigations.

Each stage outlines requirements (i.e., Standards) or recommendations (i.e., Best Management Practices) to avoid or mitigate the risk of a proposed solar energy project on wildlife and wildlife habitat:
1. Standards - provide siting, timing and site-related wildlife conservation requirements that must be met in the planning and development of a solar energy project. All Standards are preceded by “100”.

2. Best Management Practices (BMPs) - practices that may assist in the planning and location of activities. BMPs are designed to inform the proponent of desired practices while planning and operating in Alberta. BMPs are provided for information and consideration in the planning of solar energy projects to support better conservation and protection of wildlife and wildlife habitat. All BMPs are preceded by “200”.

Under Rule 007 of the AUC application process, there is a requirement to demonstrate that environmental (including wildlife) concerns are addressed. In the case of an emergency situation, Standards listed in this Directive may be exempt during the emergency period.

It is the responsibility of the proponent to ensure that the Standards are implemented and that BMPs are given consideration and implemented where practical for the project.

STAGE 1: SITE SELECTION

“Site selection” refers to the selection of a location for a solar energy project within a landscape-level or regional study area. Impacts to wildlife from solar energy projects are highly site-specific so a well-sited solar energy project will have minimal impact on wildlife and wildlife habitat and thus require few mitigation measures (Tsoutsos et al. 2005, Northrup and Wittemyer 2013). Strategic site selection can enable solar energy projects to be incorporated into current land-use regimes without impacting land of high conservation or wildlife habitat value (Fluri 2009, McDonald et al. 2009, Cameron et al. 2012). Therefore, appropriate site selection at the landscape level is the first and most critical factor in preventing significant negative effects on wildlife. AEP expects solar energy proponents to select sites with minimal wildlife and wildlife habitat concerns. If preliminary information for a potential site indicates a high risk to wildlife (i.e. presence of native grasslands, wetlands, or records of sensitive species, etc.), alternate locations should be sought. Once a site is proposed, pre-construction wildlife surveys, timing of construction and infrastructure design can be used to address site- or species-specific risks within the solar energy project (Stages 2-4).

100.1 Standards

100.1.1 Solar energy projects and temporary work spaces must be sited to avoid or minimize their occurrence in important wildlife habitats (ASRD 2011). For example, without limiting the generality of the foregoing, such areas include native grasslands, old
growth forest stands, mapped Wildlife Sensitivity Layers\(^1\), named water bodies, valley breaks (including coulees), valleys of large permanent watercourses and the eastern slopes region.

100.1.2 Further to Standard 100.1.1, solar energy projects are not allowed in the following Wildlife Zones\(^2\):

- Greater Sage-Grouse Range (inclusive of the area covered by Environment Canada’s Emergency Protection Order)
- Trumpeter Swan Waterbodies and Watercourses (inclusive of 800m setback\(^3\) from waterbody and watercourse)
- Caribou Zones
- Mountain Goat and Sheep Zones
- Piping Plover Waterbodies (inclusive of 200m setback from waterbody)

100.1.3 Solar energy projects must be appropriately sited to avoid or minimize their occurrence in the following mapped Wildlife Zones:

- Special Access Zones
- Key Wildlife and Biodiversity Zones
- Grizzly Bear Zones

100.1.4 To determine the possible occurrence of species at risk or sensitive plants and animals in the proposed area of the solar energy project, applicants must examine the available data from AEP for the proposed solar energy project plus a 1km buffer zone around all disturbances associated with the project. Data sources include the Fish and Wildlife Management Information System (FWMIS), Wildlife Sensitivity Data Sets (i.e., key range layers and key wildlife layers), Landscape Analysis Tool (LAT), Alberta Conservation Information Management System (ACIMS; for occurrences of rare plant species), and available habitat identification tools where available (e.g., Habitat Suitability Index (HSI) tools, Resource Selection Function (RSF) modeling tools). Applicants must contact the appropriate AEP Wildlife Biologist to request a

1 Wildlife Sensitivity Layers/Zones include habitat and features that have been mapped into specific ranges and zones; current versions can be accessed by searching “Wildlife Sensitivity Layers” on http://www.alberta.ca/. These wildlife layers/zones have been developed by AEP to provide industrial operators, government departments, and the general public with the best information currently available on the extent of wildlife sensitivities.

2 Wildlife Sensitivity Layers/Zones include habitat and features that have been mapped into specific ranges and zones; current versions can be accessed by searching “Wildlife Sensitivity Layers” on http://www.alberta.ca/. These wildlife layers/zones have been developed by AEP to provide industrial operators, government departments, and the general public with the best information currently available on the extent of wildlife sensitivities.

3 Note that within this document, a setback is measured from the edge of the feature to the edge of the project footprint.
search of the FWMIS database; initial database searches can be conducted by searching “FWMIS” on http://www.alberta.ca.

100.1.5 No new access development in grizzly bear watersheds approaching or exceeding open road thresholds as per the Alberta Grizzly Bear Recovery Plan as amended (found by searching “grizzly bear recovery” on http://www.alberta.ca).

100.1.6 The solar energy infrastructure must not occur within 100m from the top of a valley break (including coulees).

100.1.7 The solar energy infrastructure must not occur within 1000m of a named lake, as per NRCAN (2016).

100.1.8 The solar energy infrastructure must not occur within 100m of any wetland class (bog, fen, marsh, shallow open water, swamp) identified in Table 1 in the Alberta Wetland Classification System except for wetland classes with Water Permanence listed as Temporary within the aforementioned Table (ESRD 2015).

100.1.9 Solar energy projects using CSP- Power Tower technology will be identified by the AEP Wildlife Biologist in the signed Wildlife Renewal Energy Referral Report as a high unmitigated risk for wildlife and wildlife habitat due to the high levels of wildlife mortality associated with this technology.

STAGE 2: PROJECT LAYOUT AND PRE-CONSTRUCTION SURVEYS

At this stage, an appropriate general location has been selected and consideration regarding project layout, planning and surveys begins. Minor shifts in project footprint and layout may need to occur depending on the setback distances of local wildlife features and rare vegetation. Project proponents must conduct pre-construction wildlife and rare vegetation surveys that adequately cover the entire solar energy project area. Surveys are to be designed, conducted and supervised by experienced wildlife biologists and appropriate environmental professionals. Surveys will be designed based on local and migratory wildlife species assemblages, habitats, area topography, and project design. Pre-construction planning and surveys provide a baseline and identify potential risks to wildlife. Subsequently, the proponent and AEP Wildlife Biologist should discuss appropriate mitigation for the solar power project prior to issuance of a signed Wildlife Renewable Energy Referral Report and prior to construction.

100.2 Standards

100.2.1 Solar energy proponents must conduct pre-assessment wildlife surveys for the solar energy project area. Survey methods must follow the AEP Sensitive Species Inventory Guidelines, as amended. If AEP survey protocols are not defined, surveys must be done with the best available scientifically accepted practices. The AEP Wildlife Biologist must be consulted to discuss additional surveys that may be required, but do
not have guidelines published in the *Sensitive Species Inventory Guideline* (i.e., grizzly bear den surveys). To obtain the current AEP survey protocols search “wildlife survey methods” on http://www.alberta.ca.

The following surveys are required, at a minimum, for all solar energy project applications:

- Spring and fall migration surveys for all avian species. The range of the migration season (early, mid and late migrations) shall be considered for all avian groups when designing surveys.
- Raptor nest searches within the 1000 m buffer area.
- Breeding bird surveys (two surveys): early species (May 1st to June 15th) and late species (June 16th to July 15th).
- Field investigations to determine vegetation types and rare vegetation, including the presence and extent of native grasslands and other sensitive habitats (e.g., wetlands, riparian habitats, rare ecological communities) (ANPC 2012, GOA 2013a).

Surveys for the associated wildlife are required if the solar energy project area occurs within the following Key Range or Wildlife Layer (see *Standard 100.1.4*; also search for ‘Wildlife Sensitivity Maps’ on http://www.alberta.ca):

- Burrowing Owl Range
- Eastern Short-horned Lizard Range
- Endangered and Threatened Plant Ranges
- Ord’s Kangaroo Rat Range
- Sensitive Snake Species Range
- Sharp-tailed Grouse Range
- Swift Fox Range
- Colonial Nesting Bird Range (within 1000m of point data)
- Grizzly Bear Core and Secondary Zones

100.2.2 All wildlife surveys required by this Directive must be conducted for a minimum of one year and must be assessed as current until the project is commissioned (see *Standard 100.2.1*).

100.2.3 The proponent must ensure that the following surveys are kept current between the issuing of a signed Wildlife Renewable Energy Referral Report and construction of the project:

4 Raptor searches are required throughout the Province of Alberta; however, the type of raptor survey differs between Grassland/Parkland regions and Boreal/Montane/Alpine/Canadian Shield regions. Refer to the *Sensitive Species Inventory Guidelines* for more information.
- Burrowing Owl
- Sensitive Raptors
- Sharp-tailed Grouse
- Swift Fox
- Ord’s Kangaroo Rat
- Grizzly Bear Den

Surveys are considered current within two years of the last survey date.

100.2.4 The required setbacks and timing restrictions must be adhered to for all wildlife and habitat features detected by surveys within the solar energy project area. Solar energy projects must follow all setbacks described in Appendix B.

100.2.5 Projects for which construction has not begun within 5 years of completion of wildlife surveys will need to repeat surveys to ensure accuracy of information. This may include all initial wildlife surveys over and above those listed in Standard 100.2.1. Discussions with the AEP Wildlife Biologist will need to be re-initiated to account for the delay in project development and updating of wildlife surveys.

100.2.6 A comprehensive report must be submitted that details: methods, results, interpretation of results, and Wildlife Protection Plan (as described in Standard 100.3.2). Following the completion of surveys, data collected must be submitted to the AEP Wildlife Biologist in the appropriate format for entry into FWMIS (and to ACIMS for rare vegetation).

100.2.7 Fencing, including type, shape, layout, and continuous length must be planned to avoid impeding normal wildlife movement in the area and to reduce the chance of collision and/or entrapment.

200.2 Best Management Practices

200.2.1 The proponent should avoid ephemeral waterbodies and temporary marshes as defined by the Alberta Wetlands Classification System (ESRD 2015).

200.2.2 Any mature, wide poplars (dead or living) of 34cm diameter at breast height or greater should be maintained, regardless of whether a nest has been located in the tree (AEP 2016b).

200.2.3 Activities should be located adjacent to existing operations, existing access, or within anthropogenic clearings wherever practical to minimize the spatial extent of cumulative disturbance as well as to minimize the need for associated access. Integrated Land Management (ILM) principles should be considered in all applications. To access this information, search ‘Integrated Land Management’ on http://www.alberta.ca.
200.2.4 New disturbances should avoid complex, multi-story, mature mixed-wood forest whenever possible. Young, single-species stands of trees should be selected as the alternative site for the disturbance if one exists nearby.

STAGE 3: CONSTRUCTION AND OPERATION MITIGATION

It is important to reduce effects of solar energy infrastructure construction and operation on wildlife. Solar energy proponents must develop site and species-specific construction and operational mitigation plans that meet the expectations outlined in this Directive. Solar energy developers are expected to incorporate mitigation plans into the design of all solar energy projects. Areas of temporary disturbance, including those occurring outside of the footprint must be included in construction stage mitigation plans. Construction and ongoing mitigation techniques are described below.

100.3 Standards

100.3.1 The proponent must develop and submit to AEP a construction and operation mitigation plan that complies with this Directive. Operations include all operational activities, including maintenance.

100.3.2 The proponent must develop and submit to AEP a Wildlife Protection Plan (WPP) that complies with this Directive. The plan will include details of, but is not limited to, timing restrictions, management of noise abatement, wetland/pond protection, wildlife movement, stranded and injured wildlife, nest prevention, power line electrocution/collision risk mitigation, vehicle collision, light pollution, and other site- or species-specific issues.

100.3.3 The proponent must sequence construction activities to avoid sensitive periods for wildlife, such as the breeding season. Without limiting the generality of the foregoing, construction activities in native grassland habitats must occur outside of April 1st to July 15th (grassland bird breeding season), including the need to comply with species-specific timing restrictions (ASRD 2011). Additionally, AEP Wildlife Biologists recommend that proponents consult with the Canadian Wildlife Service to ensure compliance with the Migratory Birds Convention Act.

100.3.4 Proponents must develop and submit to AEP a mitigation plan to address any new wildlife locations identified, based on continued surveys as per Standard 100.2.1. Mitigation may include, but is not limited to: timing conditions, protective barriers, site monitors, or other mitigation techniques developed in consultation with AEP.

100.3.5 If operating within Key Wildlife and Biodiversity Zone, solar energy infrastructure construction and maintenance activities must not occur during the identified periods:

a) For all areas north of Highway #1, no activity is permitted from January 15th to April 30th.
b) South of Highway #1, west of Highway #2, no activity is permitted from December 15th to April 30th.

100.3.6 All construction activities associated with a solar energy project must minimize habitat disturbance and fragmentation through use of available minimum disturbance techniques such as matting, reduced soil stripping, frozen construction, minimized fencing and reduced road grades (see Appendix C).

100.3.7 Where vehicular access is required to be developed to, or within, Grizzly Bear Zones, Key Wildlife and Biodiversity Zones or Special Access Zones, the use of temporary access (Class IV, V, and VI) is required. Temporary roads must be closed to prevent unauthorized access and reclaimed immediately after construction (see Appendix C).

100.3.8 If upgraded vehicle access is required to be developed within a solar energy project that is located within Key Wildlife and Biodiversity Zone or Special Access Zone, it must have sufficient road-side vegetation to eliminate line-of-sight into clearings. Road-side vegetation is not required if line-of-sight from the road is limited to a maximum of 200m using opening size, topography, residual structure, etc.

100.3.9 All newly constructed roads developed to or within a solar energy project must be designed as dead-ends and should not loop through the area when located within Grizzly Bear Zones.

100.3.10 All newly constructed roads developed to or within a solar energy project in Grizzly Bear Zones must run perpendicular to creeks or rivers.

100.3.11 When a solar energy project is located in forested areas, including Grizzly Bear, Key Wildlife and Biodiversity and Special Access Zones, line-of-sight must be limited to 200m on non-roadway linear features (cross-country). New linear disturbances that intersect existing roadways must incorporate techniques that reduce the line-of-sight from the existing roadway; techniques include using live vegetation, doglegs, and boring.

100.3.12 Access control and access management must be implemented for solar energy infrastructure within Grizzly Bear, Key Wildlife and Biodiversity and Special Access Zones (see Appendix D).

100.3.13 For new access roads within the Grizzly Bear Zones associated with a solar energy project, treed buffers (at least 10m wide) must be maintained along roads that parallel cleared areas or as informed by Foothill Research Institute’s sightability tool (see: http://www.friresearch.ca).

100.3.14 Permanent solar energy infrastructure within Grizzly Bear Zones must be constructed within 100m of existing arterial all-weather permanent access.

100.3.15 Any watercourse crossings must comply with the Code of Practice for Watercourse Crossing (GOA 2013b).
100.3.16 If guy wires are required for any solar energy infrastructure they must be equipped with markers specifically designed to prevent bird collisions.

100.3.17 Solar energy project collection lines must be placed underground using minimal disturbance construction techniques (Bradley and Neville 2011).

100.3.18 Where construction activities pose a risk to wildlife, an experienced wildlife biologist (see Glossary) must be on site to monitor wildlife behaviour during construction and to propose and implement on site mitigation actions. Under such circumstances monitoring plans will be developed in consultation with AEP.

100.3.19 Legumes shall not be seeded for re-vegetation of any linear disturbance associated with solar energy projects located within Grizzly Bear Zones.

100.3.20 All solar energy projects located in bear habitat must manage attractants.

200.3 Best Management Practices

200.3.1 Proponents should minimize the need for operational personnel on site during sensitive wildlife time periods.

200.3.2 Proponents should minimize the footprint of the solar energy project.

200.3.3 Impacts to wildlife and wildlife habitat from lights should be minimized. Lighting for on-ground infrastructure should be reduced, down-shielded, and controlled by proximity sensors wherever possible.

200.3.4 Proponents should design the solar energy project to minimize new linear access. Coordinated access and industrial development strategies, which integrate the sequencing (time and space) of construction activities, should be used to minimize human footprint. The amount of cumulative vegetation clearing should be minimized through an integrated review of planned disturbance between all land users. Proponents should contact other companies operating in the area to coordinate and integrate planned linear disturbance.

200.3.5 Progressive or interim reclamation to equivalent land capability should be carried out once construction of the permanent solar energy infrastructure is complete.

200.3.6 Once no longer used for the solar energy project, the inactive portion(s) of the access road that is within 100m of a public road(s) should be closed to highway vehicle traffic within one year of non-use.

200.3.7 All workers operating in grizzly bear areas should be provided with ‘Bear Awareness Training’.

200.3.8 All activities should follow the industrial practices in the Alberta Bear-Human Conflict Management Plan for Camps (see Appendix E).
200.3.9 Crossings of permanent watercourses should be avoided whenever possible.

200.3.10 Proponents should manage construction activities to prevent and control the spread of invasive species.

200.3.11 If construction activities on native grassland habitats are unavoidable and have suitable justification accepted by the AEP Wildlife Biologist, the following guidelines are to be used – *Principals for Minimizing Surface Disturbance in Native Grasslands* (search for “native grassland disturbance” on http://www.alberta.ca) (AEP 2016a).

200.3.12 Solar energy infrastructure should avoid using guy wires on permanent communication or meteorological towers (Longcore et al. 2008, Dickey et al. 2012).

200.3.13 Where above ground transmission or distribution power lines are required due to landscape constraints, these lines should be designed to avoid collision and electrocution of birds and parallel existing power lines where practical. AEP Wildlife Biologist expects solar energy developers to comply with the suggested practices developed by the Avian Power Line Interaction Committee (APLIC 2006, 2012).

STAGE 4: POST-CONSTRUCTION WILDLIFE MONITORING AND ADAPTIVE MANAGEMENT

Post-construction monitoring is intended to assess the effectiveness of mitigation efforts and identify any ongoing wildlife risks through carcass surveys and wildlife monitoring. Monitoring determines whether additional or modified operational mitigation is required. Monitoring will be designed, conducted and supervised by experienced wildlife biologists and appropriate environmental professionals. Adaptive management is an iterative learning process producing better understanding and improved management over time and will be taken into account for all solar energy projects.

Site characteristics and results of pre-construction surveys will determine the duration and level of effort of post-construction surveys. Regardless, the AEP Wildlife Biologist requires a post-construction monitoring plan to evaluate and identify the solar energy project’s effects on wildlife. The post-construction monitoring must be conducted for a minimum of three years after the solar energy project is operational.

100.4 Standards

100.4.1 The proponent will conduct post-construction monitoring surveys annually, for a minimum of three years, after the solar energy project is operational.

100.4.2 The post construction monitoring surveys must be site-specific and adhere to a monitoring protocol that complies with this Directive.

100.4.3 The post-construction monitoring surveys required by Standard100.4.1 must:
a) document wildlife mortalities within specific solar arrays,

b) determine carcass removal rate by scavengers or other means,

c) determine searcher efficiency in detecting wildlife carcasses, and

d) monitor impacts of the solar energy project on species at risk, sensitive species or other wildlife (Huso et al. 2016).

100.4.4 Post-construction site-specific mortality monitoring protocols developed for each solar energy project must define: seasonality, frequency, extent and duration. For analysis purposes, injured or stranded wildlife will be treated the same as dead wildlife; however, the response to injured or stranded wildlife will differ from dead wildlife. The following minimum standards for post-construction monitoring plans must be met:

a) Seasonality: Surveys will target periods of greater risk of mortality (i.e., spring and fall migration and summer breeding). Surveys must be conducted between March 1st and November 15th with increased survey effort (see Frequency, Standard 100.4.4b) during the migratory periods from March 1st to May 15th and from August 15th to November 15th.

b) Frequency: Surveys will be conducted weekly during the migratory periods (March 1st to May 15th and August 15th to November 15th) and once every two weeks during the summer (May 16th to August 14th).

c) Extent: the equivalent of a quarter section (0.65km2) or one third of the solar energy project footprint, whichever is the larger area, must be surveyed. Sample area will be randomly distributed within the solar energy project.

d) Duration: Post-construction wildlife monitoring must be completed for a minimum of three years.

100.4.5 Wildlife Research and Collection permits must be obtained by the proponent to conduct the post-construction monitoring because permits are required for wildlife research activities and projects that involve handling of dead wildlife in Alberta. For more information on research permits, search “wildlife research” on http://www.alberta.ca.

100.4.6 At a minimum, an annual report must be submitted to the AEP by the date specified in the post-construction monitoring plan. More frequent reporting may be requested by the AEP.

100.4.7 When conducting any post-construction monitoring survey, the proponent shall collect, identify, label, freeze and submit the carcasses of species at risk and sensitive species, as per the agreement with AEP.
100.4.8 The post-construction annual report in *Standard 100.4.6* shall include the following:

a) a detailed description of the survey methods,

b) the raw data, using the appropriate FWMIS datasheet for each solar collector or reflector (found on http://www.alberta.ca and search for “FWMIS”),

c) results of searcher efficiency trials and scavenger removal trials,

d) the uncorrected fatality rate for birds and other wildlife expressed as the number of mortalities/megawatt/year\(^5\),

e) the corrected rates of mortalities/megawatt/year as per Huso (2011) or acceptable alternative\(^6\),

f) a summary of mortality in species and likely cause of death,

g) results of pre-construction wildlife surveys (i.e., breeding bird survey, raptor nest monitoring, etc.),

h) a comparison of the pre- and post-construction survey results if required as per *Standard 100.4.3* (e.g., breeding bird, raptor nest monitoring, etc.),

i) a comparison of the estimated fatality rates from pre-construction surveys and the fatality rates from post-construction surveys for birds, and

j) a statement of compliance with the Directive and the signature of the lead biologist.

100.4.9 Where the results of any post-construction monitoring survey demonstrates wildlife mortalities exceed acceptable levels, operational mitigation measures as described in the post-construction mitigation plan must be implemented to reduce the risk of future fatalities. Operational mitigation options to reduce or prevent wildlife fatalities include but are not limited to: the use of bird deterrents, adding white edges to solar collectors/reflectors or increase spacing between solar collectors/reflectors, or other acceptable industrial practices developed in consultation with AEP Wildlife Biologist to reduce fatalities.

100.4.10 When post-construction mitigation actions are required, the proponent must conduct an additional two years of post-construction monitoring surveys following their implementation to assess their success\(^7\). If initial mitigation does not sufficiently

\(^5\) The uncorrected mortality rate may be used if assessing the risk of mortality at an individual site.

\(^6\) AEP will use the corrected mortality rate to assess risk of mortality to birds and any other affected wildlife.

\(^7\) This can be included as part of *Standard 100.4.1*. For example, if mitigation occurs after the first year of surveys, the total survey time will be four years, but if it occurs after the second year of post-construction surveys, the total survey time will be five years.
reduce mortality, further mitigation and post-construction monitoring surveys will be required as prescribed by the AEP Wildlife Biologist.

100.4.11 Upon receipt of a written request from the AEP Wildlife Biologist, proponents will allow access and ensure that private land owners are aware of and consent to visits to the site by AEP Wildlife Biologist or associated researcher(s).
LITERATURE CITED

Avian Power Line Interaction Committee (APLIC) and U.S. Fish and Wildlife Service

GLOSSARY

Active House, Nest or Den - An active house, nest or den is one that is presently being used by wildlife as confirmed through the visual presence of an animal, or the evidence of fresh feces, signs of digging/excavation, feathers, and/or tracks.

Activities - All solar energy project operations on the landscape, including planning, construction, operation, maintenance and decommissioning.

At Risk - As defined in the Status of Alberta Wild Species, any species known to be ‘At Risk’ after formal detailed status assessment and legal designation as ‘Endangered’ or ‘Threatened’ in Alberta.

Break (valleys) - The point where change in slope of the ground demarks uplands from the fluvial hills dropping into a valley bottom, which includes watercourses and coulees. See diagram below.

Buffer - An area of vegetation maintained around a feature (distance applied to both sides of feature) to mitigate the effects of any activity applied to the area beyond the buffer.

Burrowing Owl Nest (Active) - A residence for two full years after the last known month of occupation by a burrowing owl.

Coulee - A dry stream valley, especially a long steep-sided ravine that once carried melt water from a glacier.

Commissioning - Once construction is complete meaning that all solar energy infrastructure is
in place and ready to produce electricity.

Construction - The period of time that is initiated when surface soil is mechanically disturbed for the purpose of creating or erecting solar energy infrastructure and ends when the facility is commissioned.

Disturbance - Any alteration of the natural landscape by anthropogenic or natural processes.

Emergency Situation - Emergency means an event that requires prompt co-ordination of action or special regulation of persons or property to protect the safety, health or welfare of people or to limit damage to property.

Endangered - As defined by the Alberta *Wildlife Act*, a wildlife species facing imminent extirpation or extinction.

Experienced Wildlife Biologist - AEP Wildlife Biologist Management expects that all wildlife surveys are completed by experienced trained wildlife biologists or wildlife technicians. All wildlife surveyors working in Alberta must have:

a. The ability to positively identify target species by sight and/or sound. Multiple years of wildlife and surveying experience are preferred.

b. Familiarity with the species biology, including habitat requirements of the species and experience in identifying the species habitat features.

c. Familiarity with survey methods as described in the *Sensitive Species Inventory Guidelines*. Multiple years of experience is strongly recommended.

d. Attained a Bachelor of Sciences degree in Biology, Environmental Sciences, Renewable Resources, or hold a Technical Diploma in Natural Resources or Environmental Management from a certified College.

Fescue Grasslands - Fescue grasslands are defined as the native grassland communities associated with the dark brown and black chernozemic soils of Alberta that are primarily located within the Foothills Fescue, Northern Fescue, Central Parkland, Foothills Parkland, Montane and Subalpine Natural Subregions. Note: The specific plant communities are described in the Range Plant Community Guides and can be found by searching “Range Plant Community Type Guides” at http://www.alberta.ca.

Footprint - The surface area of land disturbed from its natural condition by human activity and the associated impact to or on related natural resources.

8 The federal *Species At Risk Act* has similar designations to the Alberta *Wildlife Act*, however the individual designations afforded to a species may differ between the two pieces of legislation. It is the responsibility of the proponent to ensure they are compliant with any federal legislation.
Fragmentation - The breaking up of contiguous blocks of habitat into increasingly smaller blocks as a result of direct loss and/or sensory disturbance (i.e., habitat alienation).

Frozen Construction - Operations that occur when the ground is frozen. Conditions are dependent on local weather, rather than specific dates.

Hibernacula - Shelter used by hibernating animal or group of animals (i.e. snakes, bats) during the winter months.

Infrastructure - Any and all equipment, structures and roads that are developed for a solar energy project.

Integrated Land Management (ILM) - Is the strategic planned approach to managing and reducing human-caused footprint.

Lake effect - A hypothesis that suggests birds are attracted to arrays of solar collectors/reflectors because polarized light reflects off solar collectors/reflectors at a similar wavelength as water and therefore may appear to look like a lake.

Land Capability - The ability of land (unaltered by future management inputs, activities, or alterations) to support a given land use, based on an evaluation of the physical, chemical and biological characteristics of the land, including topography, drainage, hydrology, soils and vegetation.

Lek - A traditional place where males (grouse) assemble during the mating season and engage in competitive displays to attract females.

May Be At Risk - As defined in the *Status of Alberta Wild Species*, any species that ‘May Be At Risk’ of extinction or extirpation, and is therefore a candidate for detailed risk assessment.

Native Grasslands - An area of prairie in which natural vegetation consist primarily of perennial grasses. The native species composition must be greater than 30% (Adams et al. 2005).

Reclamation - The process of returning disturbed land to its former characteristics or other productive uses.

Right of Way (ROW) - A cleared area, usually linear, containing a road and its associated features such as shoulders, ditches, cut and fill slopes, or the area cleared for the passage of utility corridors containing collection lines or over- or under-ground pipelines. Typically, the right-of-way is a designated area of land having specific rights of usage attached.

Riparian - The adjoining vegetated uplands that are directly influenced by the waterbody.

Sensitive Raptor Active Nest - A raptor nest will retain ‘active’ designation during the winter
following nesting activity, through a second year, and into a third year, with the ‘active’ designation being dropped on June 1st of the second year of inactivity. The nest will retain ‘active’ designation at the discretion AEP, if no other nesting structures (trees, platforms) are available within a 1km radius of the nest.

Sensitive Species - Any species that is not at risk of extinction or extirpation, but may require special attention or protection to prevent it from becoming at risk.

Sensory Disturbance - Impacts to and disturbances from noise, light, odour or vibrations associated with human activities.

Setback Distance - The interval distance between a wildlife site and the edge of the nearest point of anthropogenic disturbance. For solar energy projects, setback distance is measured from the closest edge of the project footprint to the closest edge of the feature.

Solar Energy Infrastructure - All man-made components required to operate a solar energy project, including solar collectors/reflectors, inverter units, substations, collection lines, roads, etc.

Solar Energy Project - The inclusive term for the entire area of the solar energy project and all solar energy related infrastructure within the footprint, including solar collectors/reflectors, buildings, inverter units, collection lines, roads, laydown areas, fences, temporary work spaces, and the substation.

Species at Risk\(^9\) - Any species identified by the Wildlife Act of Alberta as ‘Endangered’, ‘Threatened’ or ‘Species of Special Concern’. Or has been identified under Alberta’s General Status process as ‘At Risk’, ‘May Be At Risk’ or ‘Sensitive’.

Substation - An auxiliary power station where electrical current is converted.

Temporary Work Space - The use of existing clearings or the new clearing of public or private land to facilitate the construction of a disposition or operation; often called a laydown area.

Threatened\(^10\) - As defined by the Wildlife Act of Alberta, a wildlife species likely to become ‘Endangered’ if limiting factors are not reversed.

Waterbody - Any location where water is present, whether or not the presence of water is

\(^9\) The federal Species At Risk Act has similar designations to the Alberta Wildlife Act, however the individual designations afforded to a species may differ between the two pieces of legislation. It is the responsibility of the proponent to ensure they are compliant with any federal legislation.

\(^10\) The federal Species At Risk Act has similar designations to the Alberta Wildlife Act, however the individual designations afforded to a species may differ between the two pieces of legislation. It is the responsibility of the proponent to ensure they are compliant with any federal legislation.
continuous, intermittent or occurs only during a flood, and includes, but is not limited to, wetlands and aquifers.

Watercourse - A river, brook, stream or other natural water channel (includes ephemeral draws), including the bed along which water flows.

Watercourse (Intermittent) - Small stream channels; Small springs are the main water source outside periods of spring runoff and heavy rainfall. Distinct channel development; channel usually has no terrestrial vegetation; channel width is less than 0.4m; usually some bank development.

Watercourse (Small Permanent) - Permanent streams; often small valley bottoms; bench floodplain development. Banks and channel well defined; channel width from greater than 0.7m to 5m.

Watercourse (Large Permanent) - Major streams or rivers; well-defined flood plains; often wide valley bottoms. Non-vegetated channel width exceeds 5m.

Wetland - Land having water at, near, or above the land surface, or which is saturated with water long enough to promote wetland or aquatic processes as indicated by poorly drained hydric soils, hydrophytic vegetation, and various kinds of biological activity that are adapted to the wet environment.

Wildlife - All wild species including plants, invertebrates, and micro-organisms, as well as fishes, amphibians, reptiles, and the birds and mammals traditionally regarded as wildlife.

Wildlife Habitat - The terrestrial and aquatic environments and associated ecosystem elements that in combination provide the requirements of food, shelter, and space needed to support self-sustaining populations of wildlife.

Wildlife Survey - A comprehensive survey for all species observations and habitat features, as identified in the Landscape Analysis Tool, near the proposed area of a development, as defined by the protocols outlined in the *Sensitive Species Inventory Guidelines*.

Ungulate - A hoofed mammal.
APPENDIX A – AEP Wildlife Outcomes

AEP Wildlife Biologist Outcomes: describe the goals for various wildlife species and their associated habitat enabled through the implementation of avoidance and mitigation strategies identified in this Directive.

A. Reduce human caused wildlife mortality.
B. Reduce increased predation associated with anthropogenic features.
C. Conserve and protect habitat.
D. Maintain the ecological conditions necessary for naturally sustainable wildlife populations to exist throughout Alberta, and conserve the habitats they require.
 i. Maintain unique and/or important wildlife habitat sites.
 ii. Avoid or minimize development within key habitats (local and landscape scales) and key seasons.
 iii. Maintain habitat intactness, connectivity, and allow for wildlife use, breeding and passage throughout areas by minimizing habitat loss and fragmentation.
E. Minimize potential adverse effects of land-use activities on wildlife population health.
F. Reduce the potential for habitat avoidance due to the presence of anthropogenic features.
G. Decrease potential for sensory disturbance and displacement of wildlife.
APPENDIX B – Setbacks and Timing Restrictions

Required setbacks and timing restrictions for wildlife and wildlife features detected at solar energy projects in Alberta. Setbacks are measured from the edge of the disturbance to the edge of the wildlife feature. The wildlife feature is measured from the edge of the nesting site for birds or the bed and shore of wetland breeding pond for amphibians. For all species not specified below, the setback is 100m from an active house, nest or den.

<table>
<thead>
<tr>
<th>Species</th>
<th>Habitat Feature</th>
<th>Time of Year</th>
<th>Setback Distances</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphibians</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Great Plains toad, plains spadefoot, northern leopard frog, boreal toad, Columbia Spotted Frog and Canadian toad</td>
<td>Breeding ponds</td>
<td>Year round</td>
<td>100m</td>
<td>This applies to any wetland class (bog, fen, marsh, shallow open water, swamp) identified in Table 1 in the Alberta Wetland Classification System (ESRD 2015) except for wetland classes with Water Permanence listed as Temporary in this Table.</td>
</tr>
<tr>
<td>long-toed salamander</td>
<td>Breeding ponds</td>
<td>Year round</td>
<td>200m</td>
<td></td>
</tr>
<tr>
<td>Reptiles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wandering garter snake, plains garter snake, and red-sided garter snake</td>
<td>Hibernacula</td>
<td>Year round</td>
<td>500m</td>
<td></td>
</tr>
<tr>
<td>bull snake, prairie rattlesnake, and western hognose snake</td>
<td>Hibernacula</td>
<td>Year round</td>
<td>500m</td>
<td>Construction & upgrades of roads are of concern within habitat proximate to river valleys inhabited by snakes.</td>
</tr>
<tr>
<td></td>
<td>Birthing rookeries</td>
<td>Year round</td>
<td>200m</td>
<td>Additional to hibernacula setback to the extent necessary.</td>
</tr>
<tr>
<td>short-horned lizard</td>
<td>Suitable habitat</td>
<td>Year round</td>
<td>200m</td>
<td>Pre-development surveys required in areas of suitable</td>
</tr>
<tr>
<td>Species</td>
<td>Habitat Feature</td>
<td>Time of Year</td>
<td>Setback Distances</td>
<td>Comments</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Birds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>peregrine falcon, prairie falcon, ferruginous hawk, bald eagle, and golden eagle</td>
<td>Nesting sites</td>
<td>Year round</td>
<td>1000m</td>
<td>habitat. Habitat is mapped for this species.</td>
</tr>
<tr>
<td>osprey</td>
<td>Nesting sites</td>
<td>Year round</td>
<td>750m</td>
<td></td>
</tr>
<tr>
<td>northern goshawk</td>
<td>Nesting sites</td>
<td>Year round</td>
<td>500m</td>
<td></td>
</tr>
<tr>
<td>barred owl</td>
<td>Nesting sites</td>
<td>Year round</td>
<td>500m</td>
<td></td>
</tr>
<tr>
<td>burrowing owl</td>
<td>Active den</td>
<td>Year round</td>
<td>500m</td>
<td>Den considered active for two full years after the last known month of occupation.</td>
</tr>
<tr>
<td>long-billed curlew, upland sandpiper, mountain plover, short-eared owl, chestnut-collared longpur, and Sprague’s pipit</td>
<td>Active nest and surrounding habitat</td>
<td>Apr 1 - Jul 15</td>
<td>100m</td>
<td></td>
</tr>
<tr>
<td>sharp-tailed grouse</td>
<td>Lek and surrounding habitat</td>
<td>Year round</td>
<td>500m</td>
<td>No human activity within setback from 1 hour before sunrise to 2 hours after sunrise from March 15th to June 15th. Maintain shrub cover within 1000m of lek.</td>
</tr>
<tr>
<td>greater sage grouse</td>
<td>Leks</td>
<td>Year round</td>
<td>3200m</td>
<td>Habitat is mapped for this species.</td>
</tr>
<tr>
<td></td>
<td>Habitat</td>
<td>Year round</td>
<td>1000m</td>
<td></td>
</tr>
<tr>
<td>American white pelican</td>
<td>Nesting colonies</td>
<td>Year round</td>
<td>1000m</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Habitat Feature</td>
<td>Time of Year</td>
<td>Setback Distances</td>
<td>Comments</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------------------------</td>
<td>-----------------------</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>great blue heron</td>
<td>Nesting colonies</td>
<td>Year round</td>
<td>1000m</td>
<td>Habitat is mapped for this species.</td>
</tr>
<tr>
<td>loggerhead shrike</td>
<td>Nesting sites</td>
<td>Apr 15 - Jul 15</td>
<td>150m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jul 16 - Apr 14</td>
<td>50m</td>
<td></td>
</tr>
<tr>
<td>pileated woodpecker</td>
<td>Nesting sites</td>
<td>Year round</td>
<td>100m</td>
<td></td>
</tr>
<tr>
<td>pied-billed grebe and horned grebe</td>
<td>Nesting sites</td>
<td>Apr 15 - Jul 31</td>
<td>500m</td>
<td></td>
</tr>
<tr>
<td>western grebe</td>
<td>Nesting sites</td>
<td>Year round</td>
<td>1000m</td>
<td></td>
</tr>
<tr>
<td>Forster’s tern</td>
<td>Nesting sites</td>
<td>Year round</td>
<td>1000m</td>
<td></td>
</tr>
<tr>
<td>black tern</td>
<td>Nesting sites</td>
<td>Year round</td>
<td>1000m</td>
<td></td>
</tr>
</tbody>
</table>

Mammals

<table>
<thead>
<tr>
<th>Species</th>
<th>Habitat Feature</th>
<th>Time of Year</th>
<th>Setback Distances</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ord’s kangaroo rat</td>
<td>Dens</td>
<td>Year round</td>
<td>250m</td>
<td>All activity should conclude before sunset and not use artificial illumination within 1000m of mapped range. Larger setbacks may be recommended.</td>
</tr>
<tr>
<td>swift fox</td>
<td>Dens</td>
<td>Year round</td>
<td>500m</td>
<td></td>
</tr>
<tr>
<td>northern myotis</td>
<td>Roost sites and Hibernacula</td>
<td>Year round</td>
<td>300m</td>
<td></td>
</tr>
<tr>
<td>grizzly bear</td>
<td>Dens</td>
<td>Oct 1 - Apr 30</td>
<td>750m</td>
<td></td>
</tr>
</tbody>
</table>

Plants

<table>
<thead>
<tr>
<th>Species</th>
<th>Habitat Feature</th>
<th>Time of Year</th>
<th>Setback Distances</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>tiny cryptantha, whitebark pine, limber pine, western spiderwort, small-flowered sand verbena, hare-footed locoweed, slender mouse-eared cress, and soapweed (yucca)</td>
<td>Populations</td>
<td>Year round</td>
<td>300m</td>
<td>Setback is measured from all detectable individuals.</td>
</tr>
</tbody>
</table>
APPENDIX C – Road Class Specification

All roads necessary for access to the solar energy project are required to use road classes as defined in the table below.

<table>
<thead>
<tr>
<th>Class</th>
<th>Right of Way Width</th>
<th>Usage Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I</td>
<td>30 – 40m</td>
<td>• All weather access. Primary corridor.</td>
</tr>
<tr>
<td>Class II</td>
<td>20 – 30m with variable allowance for terrain conditions</td>
<td>• All weather or dry weather access.</td>
</tr>
</tbody>
</table>
| Class III | < 20m with variable allowance for terrain conditions 15m where terrain or other conditions allow | • All weather or dry weather access.
 • Site specific cuts and fills may be required. Right of way (ROW) width shall be the minimum required to allow travel, while addressing environmental concerns. |
| Class IV | < 15m with variable allowance for terrain conditions Up to 20m where required for watercourse approaches (to enable water management), log decks (every 800m), corners, side slopes, and pull outs; all not to exceed 20% of the length of the route | • Low Grade, frozen or dry conditions.
 • Can be constructed and used year round when conditions are suitable.
 • Should a portion of the route become impassable due to wet conditions, drainage problems, or rutting, site specific improvements (i.e. matting, padding, culverts etc.) to the problematic area(s) may be implemented.
 • Some access improvements required to support specific site servicing work shall be temporary only and removed after the activity is over.
 • ROW width shall be the minimum required to allow travel, while addressing environmental concerns.
 • Roads will typically follow contours of the landscape more closely than do higher standard routes.
 • Drainage control and borrow material may be required on a site-specific basis.
 • Cuts and fills shall be minimized. |
| Class V | 10m with variable allowance for terrain conditions Up to 20m where | • Minimal disturbance – frozen or equivalent to frozen.
 • Allows for winter operations and/or emulates frozen ground access when frost conditions are not adequate or not present.
 • Access will minimize ground disturbance under non-frozen |
<table>
<thead>
<tr>
<th>Class</th>
<th>Right of Way Width</th>
<th>Usage Description</th>
</tr>
</thead>
</table>
| Class VI (Prairie and Parkland) | < 15m, with variable allowance for terrain conditions | • Minimal disturbance – dry or frozen ground.
• Ground disturbance, surface vegetation disturbance, grade development, ROW clearing and surface improvements shall be minimized. No grading shall occur.
• Can be constructed and used year round; during unfavourable ground conditions cessation of use or mitigation measures are required.
• May require adjustments to access schedules, and require use of alternative vehicles for site monitoring.
• Road width shall be minimized, wherever possible, by sharing space with pipeline ROWs, or other existing linear disturbances. |
APPENDIX D – Access Control and Management

Access Control

1. Access control techniques are intended to restrict unauthorized access of vehicles. Where access control is required, the control measures identified below shall be effective, maintained, and monitored. Control measures may include one or more of the following:
 - earthen berms
 - permanent or temporary removal of water crossing structures
 - barricades
 - locked gates
 - manned checkpoints
 - road security patrols
 - treed buffers
 - re-vegetation
 - de-compaction
 - roll-back
 - pre-existing access control

The proponent will select an appropriate access control method to limit both highway and off-highway vehicles from accessing the site.

2. Signage should accompany all access control measures. Sign must be located at a visible spot at least 1.5m off the ground and not be obscured by plowed snow or vegetation.

3. When gates are used for access control, the following conditions shall apply:
 a. Locked gates shall be constructed at locations and in a manner which will contribute to their effectiveness in preventing access to the road (in combination with applying public access restrictions).
 b. Gates shall remain closed and locked at all times. The gate may only be opened to allow for the passage of an authorized vehicle.
 c. Locks shall be placed in a structure that is designed to protect them from being broken.
 d. As locks are lost or destroyed, they will be replaced within 72 hours of the disposition holder being aware of the need.
 e. Gates will be designed to ensure that passage of a 4x4 on-highway vehicle is restricted. This may include the use of barrier rock, berms, ditches, placement of the gate before a bridge or other impediments to travel around the gate. All gates will be installed in such a manner that a safety hazard is not created.
 f. Use of combination locks is required. Where this is not possible and keyed locks are used, double locking using a regulatory body lock is required. (Double locking refers to a company lock and a regulatory body lock on the same gate, allowing each party to pass using their own keys).
 g. Disposition Holders will only make combination lock changes with prior confirmation from the issuing regulatory body staff in charge.
APPENDIX E – Alberta Bear-Human Conflict Management Plan for Camps

These practices are recommended for establishing or operating a camp in bear season, from April 1st to November 30th.

Purpose

1. To reduce bear-human conflicts and enhance safe working environments (compliance with Alberta’s Occupation Health and Safety Regulations) by reducing or eliminating attractants for bears and creating barriers to prevent bear access to camps.
2. To help industries to comply with the Alberta Wildlife Act and ensure that industries operating in bear country handle garbage, food, cooking areas and other attractants appropriately.
3. To ensure the conservation of black and grizzly bears.

The applicant is responsible for appointing a main contact person for all bear concerns on the disposition. It is recommended that the Safety Officer or the person appointed to oversee camp operations be the main contact. This person is responsible for responding to all inquiries about bear concerns before contacting AEP, to ensure that concerns are verified, any unsafe worksite practices are identified (including employees feeding bears) and immediate preventive actions are implemented. If an Alberta Fish and Wildlife Officer responds to a verified complaint or concern by the company contact person, the Officer may direct the implementation of additional management practices (e.g., fencing). Any direction will be in writing either as a recommended operating Standard or as an order pursuant to the Wildlife Act.

All bear encounters shall be promptly reported to the local Alberta Fish and Wildlife District Office by calling 310-0000. In an emergency situation, workers should call 1-800-642-3800. All grizzly bear sightings at a camp shall be reported immediately to local Solicitor General Fish and Wildlife Officer or an AEP Wildlife Biologist.

A. Long-term Industrial Camps

1. Use bear-resistant garbage containers. Wood containers are not considered bear resistant unless they are reinforced with metal. All lids shall be kept secured and closed when not being loaded.
2. Use bear-resistant garbage-containment receptacles (large bins).
3. Use totally enclosed bear-resistant black water containment with disposal at an approved facility.
4. Use bear-resistant secure cooking grease storage containment. Lids shall be kept closed when not being loaded and the exterior shall be kept clean.
5. At worksites not enclosed by a perimeter fence, waste food and food containers/wrappers are to be disposed of in garbage containers in secure buildings or in bear-resistant containers and transferred to bear-resistant garbage containment receptacles at least daily
prior to nightfall.

6. No waste disposal or waste storage facilities in camp or work area parking lots that are not within a fenced area.

7. Where parking lots are not encompassed by a fence, signs shall be posted in those lots advising workers not to litter and to remove all waste from vehicles and dispose of it in waste containers within the enclosed camp area.

8. In response to bear occurrence, the presence of bear attractants, and/or bear-human conflict at a location, the following Standard may be required following direction from an Alberta Fish and Wildlife Officer:
 a. All garbage containment areas and waste water containment facilities shall be encompassed by a permanent two-metre chain-link, or game-proof fence with:
 i. Three strands of barbed wire on top surrounded by a four-strand electrified fence complete with electrified gate access, or
 ii. A seven-strand wire electrified fence complete with electrified gate access.
 iii. Fence and gate electrified function shall be tested daily and a two-meter vegetation control buffer maintained on all sides of the fence.

B. Seasonal Long-term Camps (one April 1st to November 30th bear season)

1. Bear-resistant garbage containers. Wood containers are not considered bear resistant unless they are reinforced with metal. All lids shall be kept secured and closed when not being loaded.
2. Use bear-resistant garbage-containment receptacles (large bins).
3. Totally enclosed bear-resistant black water containment with disposal at an approved facility.
4. Bear-resistant secure cooking grease storage containment. Lids shall be kept closed when not being loaded and the exterior shall be kept clean.
5. At worksites not enclosed by a perimeter fence, waste food and food containers/wrappers are to be disposed of in garbage containers in secure buildings or bear-resistant containers and transferred to bear-resistant garbage containment at least daily prior to nightfall.
6. No waste disposal or waste storage facilities in camp or work area parking lots that are not within a fenced area.
7. Where parking lots are not encompassed by a fence, signs shall be posted in those lots advising workers not to litter and to remove all waste from vehicles and dispose of it in waste containers within the enclosed camp area.
8. In response to bear occurrence, the presence of bear attractants, and/or bear-human conflict at a location, the following Standard may be required following direction from an Alberta Fish and Wildlife Officer: All garbage containment areas and waste water containment facilities shall be encompassed by a seven-strand wire electrified fence complete with electrified gate access. Fence and gate electrified function shall be tested daily and a two metre vegetation control buffer maintained on all sides of the fence.

C. Short-term Temporary Camps (less than one April 1st to November 30th bear season)

1. Bear-resistant garbage containment with secure lids that shall be kept closed when not
being loaded.
2. Garbage containment receptacles (large bins) housed off-site.
3. Totally enclosed bear-resistant black water containment.
4. Bear-resistant secure cooking grease storage containment. Lids shall be kept closed when not being loaded and the exterior shall be kept clean.
5. Non-food attractants such as greases and oils that are kept at worksites are to be kept in bear-resistant storage such as hard-walled buildings, fuel sheds or strong boxes.
6. At worksites not enclosed by the perimeter fence, waste food and food container and wrappers are to be disposed of in garbage containers in secure buildings or in bear-resistant containers at outdoor work sites and transferred to bear-resistant garbage containment daily prior to nightfall.
7. In addition to the above, the following management practices shall be added where accommodations are in soft-walled structures:
8. Locate camps in open areas with good visibility and at least 200m away from bear food sources (such as berries).
9. Keep sleeping areas away from cooking and eating areas.
10. Clean cooking and eating areas after eating and place food or dispose of waste in appropriate containment.
11. Store all food indoors in bear-resistant containers or a hard-walled structure or trailer.
12. Cook and eat in a central area or structure.
13. Inspect the camp daily for bear attractants and minimize or eliminate.
14. In response to bear occurrence, the presence of bear attractants, and/or bear-human conflict at a location, the following Standard may be required following direction from an Alberta Fish and Wildlife Officer:
a. Four-strand electrified fence complete with electrified gate access encompassing all garbage containment areas, wastewater containment, cooking facilities and accommodation facilities. Fence and gate electrified function shall be tested daily and a two metre vegetation control buffer maintained on all sides of the fence.